Raman reporter-coated gold nanorods and their applications in multimodal optical imaging of cancer cells.
نویسندگان
چکیده
We report the preparation of a kind of surface-enhanced Raman scattering (SERS) tags and explore their applications in multifunctional optical imaging of cancer cells. The proposed nanoparticles (SERS tags) are prepared by connecting dye molecules directly onto the surfaces of gold nanorods through Au-S or Au-N interactions. The dye molecules are used as Raman reporters, while gold nanorods are used as enhanced materials due to their localized surface plasmon resonance effect. Multilayered polymers are further coated onto the surfaces of the nanoparticles to reach better stability and biocompatibility. Gold nanorods with different aspect ratios and different dye molecules conjugated are compared in order to achieve the diversity of SERS tags and find out the optimized condition of SERS tags with the highest signal intensity. Our experiments show that the resulting nanoparticles, which are uptaken by cancer cells, can provide not only dark field cells images but also multiplexing SERS images.
منابع مشابه
Multifunctional optical imaging using dye-coated gold nanorods in a turbid medium.
We report multifunctional optical imaging using dye-coated gold nanorods. Three types of useful information, namely, Raman, fluorescence signals, and absorption contrast, can be obtained from a phantom experiment. These three kinds of information are detected in a nanoparticle-doped-phantom using diffuse optical imaging. Our novel nanoparticle could be used as a multimodality marker for future ...
متن کاملIn vitro biomechanical properties, fluorescence imaging, surface-enhanced Raman spectroscopy, and photothermal therapy evaluation of luminescent functionalized CaMoO4:Eu@Au hybrid nanorods on human lung adenocarcinoma epithelial cells
Highly dispersible Eu3+-doped CaMoO4@Au-nanorod hybrid nanoparticles (HNPs) exhibit optical properties, such as plasmon resonances in the near-infrared region at 790 nm and luminescence at 615 nm, offering multimodal capabilities: fluorescence imaging, surface-enhanced Raman spectroscopy (SERS) detection and photothermal therapy (PTT). HNPs were conjugated with a Raman reporter (4-mercaptobenzo...
متن کاملMultimodal optical microscopy in combination with gold nanorods for cancer cell imaging.
The multimodal optical imaging technique, which utilizes nonlinear and linear optical processes, plays an important role in biological and biomedical research. As second-order nonlinear phenomenon, the two-photon luminescence (TPL) results from the nonlinear excitation of fluorescent molecules, while the second harmonic generation (SHG) depends on the second order nonlinear polarization, orient...
متن کاملCirculating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances
Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface...
متن کاملApplications of gold nanoparticles in cancer nanotechnology.
It has been almost 4 decades since the "war on cancer" was declared. It is now generally believed that personalized medicine is the future for cancer patient management. Possessing unprecedented potential for early detection, accurate diagnosis, and personalized treatment of cancer, nanoparticles have been extensively studied over the last decade. In this review, we will summarize the current s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical and bioanalytical chemistry
دوره 400 9 شماره
صفحات -
تاریخ انتشار 2011